
1985 

AUTOMATED DATA ORDERING 

IN PHOTOGRAMMETRY 

By 

JAMES R. LUCAS 

National Charting Research and Development Laboratory 

PREPARED FOR PUBLICATION IN A 
SPECIAL COMMEMORATIVE VOLUME 
BEING ISSUED BY THE TECHNICAL 
UNIVERSITY IN ZURICH, SWITZERLAND, 
HONORING DR. HELLMUT H. SCHMID 

u.S. DEPARTMENT OF COMMERCE 
National Oceanic and Atmospheric Administration 

National Ocean Service 
Office of Charting and Geodetic Services 

Rockville, Maryland 

MAY 1985 



AUTOMATED DATA ORDERING 

IN PHOTOGRAMMETRY 

By 
JAMES R. LUCAS 

T 

National Charting Research and Development Laboratory 

PREPARED FOR PUBLICATION IN A 
SPECIAL COMMEMORATIVE VOLUME 
BEING ISSUED BY THE TECHNICAL 
UNIVERSITY IN ZURICH. SWITZERLAND. 
HONORING DR. HELLMUT H. SCHMID 

U.S. DEPARTMENT OF COMMERCE 
National Oceanic and Atmospheric Administration 

National Ocean Service 
Office of Charting and Geodetic Services 

Rockville. Maryland 

MAY 1985 



AUTOMATED DATA ORDERING IN PHOTOGRAMMETRY 

James R. Lucas 
National Charting Research and Development Laboratory 
Charting & Geodetic Services, National Ocean Service 

National Oceanic and Atmospheric Administration 
Rockville, Maryland 20852 

ABSTRACT 

When the data In a photogrammetric block-bundle adjustment 
Is ordered In the most advantageous manner the resulting normal 
equations have a banded structure for which both storage and 
computer time is near minimal. Several algorithms designed to 
reduce bandwidth, profile, or fill are compared using a hypothe
tical photo block in search of an automated method that would 
improve on the manual process of cross-strip numbering. None of 
the algorithms investigated could be considered superior to man
ual sorting in all respects, and therefore, a heuristically 
derived algorithm is proposed that will duplicate optimum manual 
sorting in an Ideal case. 

INTRODUCTION 

When Dr. Hellmut Schmid went to the Technical University in 
Zurich, Switzerland, as a Visiting Professor in January 1974, it 
became necessary to hand down some of his many active projects to 
various members of the Geodetic Research and Development Labora
tory (GRDL) of the National Geodetic Survey (NGS). One such 
project, the simultaneous adjustment of more than 1,200 metric 
quality photographs obtained on the last three Apollo missions, 
for the purpose of establishing a Selenocentric control network 
(Doyle et aI, 1977), was temporarily assigned to the author. In 
September 1974, when Dr. Schmid retired from the NGS and moved 
permanently to Switzerland, this temporary assignment continued 
to be a challenging and rewarding responsibility. 

Selection, identification, and measurement of the imagery 
were accomplished by the Defense Mapping Agency, which also 
provided the orientation angles of each photo, as determined from 
the coupled stellar exposures. The MUSAT IV program (Elassal et 
aI, 1970) was prOVided by the U.S. Geological Survey, which was 
cooperating in the project, so there was very little software 
development reqUired. The only major obstacle that remained was 
structuring the data such that the adjustment of more than 23,000 
unknown parameters could be fit into the available computer, a 
CDC-6600 with approximately 300K words of available storage, and 
completed within a reasonable time. 

Cross-strip numbering of photographs to minimize the band
width of the normal equation structure (Gyer, 1967) was common 
practice In dealing with conventional photogrammetrlc networks. 
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However, the varying aMounts of overlap that resulted from orbi
tal photography within each Mission and the criss-crossing of 
strips from missions with different orbital Inclinations provided 
a More difficult problem than had been anticipated. Attempts to 
order the photos for acceptable bandwidth consisted of visual 
Inspection of a ground track graphic by experienced photogram
Metrlsts and a More elaborate scheme based on sliding a template 
perpendicular to a line approximating the long dimension of the 
block and selecting photos In the order In which their plotted 
nadir points were encountered. The best effort resulted In a 
bandwidth of 504 unknowns (84 photos) which would have required 
more than 250K words of storage for that portion of the normal 
equation matrix that must reside In core. 

The ordering that was finally used to accomplish this 
adjustment was provided by the U.S. Naval Ship Research and 
Development Center's BANDIT Program, which employed the algorithm 
of Cuthill and McKee (1969) and had been Implemented on the NGS 
computer by Robert H. Hanson of the GRDL. The resulting band
width of 360 unknowns (60 photos) was comfortably within what had 
been estimated to be the maximum that could be accommodated on 
the available computer. The adjustment was completed In 14 hours 
of clock time (just under 5 hours of central processor tiMe). 

This experience was the author's Motivation for Investigat
Ing a number of reordering algorithms, that are being used In 
other fields to determine their applicability to photogrammetrlc 
networks. This work, not driven by any Immediate need, Includes 
only a fraction of the algorithms available; so the reader 
should be forewarned against expecting an exhaustive analysis. 

BACKGROUND 

Most conventional photogrammetrlc networks follow a regular 
pattern and It Is not difficult to find a near optimum ordering 
by Inspection of a coverage diagraM; but It Is often convenient 
to be able to rely on the computer to perform this task. With 
the present trend toward autoMation In all phases of photogram
metry and cartography, the demand for automating the data order
Ing process will continually Increase. Therefore, It will be 
valuable to know the characteristics and applicability of some of 
the autOMated data ordering algorithMs that have become Invalu
able In many disciplines Involving large data adjustment prob
leMs. 

Duff (1976) defines a sparse matrix system as one In which 
one can take advantage of either the percentage or distribution 
of zero elements. The distribution Is generally the more Impor
tant of the two, as evidenced by the advantage that has already 
been gained with the banded structure of photogrammetrlc net
works. The Minimal storage requirements, the small percentage of 
the Inverse elements that have to be computed, and the ease with 
which logical groups of data can be moved to and from peripheral 

2 



storage devices create an aesthetically appealing process. Is 
there room for laproveaent? Or, should we be satisfied with 
Merely finding a better aeans of automating the bandwidth Mini
mization process? In the following sections, we will consider 
the Merits of SOMe reordering algorithms used for bandwidth 
reduction and alternative Methods designed to minimize the crea
tion of non-zero elements during matrix factorization; but first 
SOMe general background Information will be needed. 

Host sparse Matrix literature, and reorder algorlth~s In 
particular, rely heavily on graph theory, which like most spe
cialties, has developed a terminology that May not be familiar to 
the uninitiated. If we let A be an n by n sparse symmetric, 
positive definite Matrix, the diagonal elements, a I' are called 
nodes or vertices and the non-zero off-diagonal e!ements, a , 
are called edges. The Maxl~um value within row I of j-I for n~~
zero a lj Is called the local bandwidth, b

l
, of row I; and the 

maximum of the b Is called the bandwidth of A. The maximum 
value of j-I wlthlA column j for which a l Is non-zero Is called 
the local column bandwidth; and the sum 6f all column bandwidths 
Is called the profile (or column profile) of A. 

Two nodes a and a are said to be adjacent If they are 
connected by an ed§J a . jthe degree of a node a. Is the number 
of edges It shares wlt~jother nodes or simply thelAumber of non
zero off-diagonal elements In row I. 

A path between two nodes Is a sequence of edges beginning at 
one and ending at the other. The distance between two nodes Is 
the length of, or nUMber of edges In, a shortest path from one to 
the other, and a diameter of the graph Is a shortest path connec
ting two nodes of MaxiMal distance apart. A level structure of a 
graph Is a partition of the nodes Into levels such that all nodes 
adjacent to nodes In level I are In either level I-I, I, or 1+1. 

In the normal equation Matrix associated with a photogram
Metric network, the 6 by 6 submatrlces lying on the prinCipal 
diagonal and associated with one photograph can be considered a 
single node, and the off-diagonal 6 by 6 submatrlces as Indivi
dual edges. This device of treating submatrlces as single ele
ments simplifies the analysis considerably. We Must keep In mind 
this difference In terMinology, however, when estiMating storage 
or number of operations to be perforMed. To prevent confusion, 
we will use B for a bandwidth cOMposed of submatrlces and b for 
one given In terMS of Matrix eleMents. To be consistent with 
previous photograMmetrlc usage, the bandwidth B will Include the 
diagonal block so that b = nB - 1, where n Is the diMension of 
the block used In determining B. Bandwidth Is very Important 
because It determines the amount of core storage that Must be 
aade available to perform the network adjustaent. 

Another Important factor In sparse aatrlx Methods Is the 
number of elements that are Initially zero, but become non-zero 
as a result of fill during the forward reduction by Gaussian or 
Cholesky factorization. In photogrammetrlc networks, fill can be 
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described In terMS of a number of matrices. rather 
dual eleaents. Throughout this paper. fill will be 
and will be aeasured In n by n aatrlces, where n 
otherwise specified. 

than Indlvl
denoted by F 
= 6 unless 

The Initial form of the nor.al equations of a photogra~
Metric network can be partitioned Into two block diagonal Matri
ces. one associated with ground points and the other associated 
with camera station parameters. and a aatrlx of connections 
between them. When ground points are eliMinated In the reduc
tion. there Is fill that ties together all photographs that IMage 
CO.Mon ground points and Is Independent of the ordering of the 
photos. Note that the diagonal blocks were Initially non-zero and 
are the only non-zero Matrices that are not a part of F. Once 
the factorization of the photo parameter partition begins. there 
will be additional fill that Is very Much dependent on the order
Ing of the photos and will deterMine how .any additional Inverse 
terMS MUSt be cOMputed. This additional fill. which is a subset 
of F. will be denoted by F'. 

Since the development within the National Ocean Service 
(NOS) of equip~ent and techniques for photogrammetrlc densiflca
tlon of geodetic networks. pioneered by Dr. Schmid and described 
by Slama (1978). we have become accustomed to thinking of photo
grammetrlc networks as having the same amount of side overlap as 
forward overlap. usually 67 per cent. Such a configuration has 
the distinct advantage that. neglecting edge effects. all ground 
points are laaged on at least nine photographs and all photo
graphs see at least nine ground points. Therefore. a saaple case 
to be used In this evaluation will be a hypothetical network 
consisting of 6 strips of 8 photos each with the uniform 67 per 
cent overlap described above and with one ground point located at 
the nadir of each photo. Photos In the center of the network, 
therefore, become connected to the twenty-four photos surrounding 
them. This arrangement removes all asymmetries except for the 
rectangular form of the network. 

BANDWIDTH AND PROFILE REDUCTION ALGORITHMS 

The purpose of bandwidth and profile reduction Methods is to 
either minimize the In-core storage requirement by reducing the 
bandwidth or to MiniMize computer tiMe by reducing the fill or 
both. The MOst widely used method of bandwidth and profile 
reduction used In photogrammetry Is cross-strip nUMbering done by 
Manual sorting of the data. While this Is not an automatic 
algorithM. It will serve as a Model against which other Methods 
can be cOMpared. 

CROSS STRIP NUMBERING (CSN). 

Cross-strip numbering. as the name Implies. Is simply num
bering the photographs In the order In which they are encountered 
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going across the strips on which they were acquired. This as
sumes. of course. that the photography was flown In strips paral
lel to the long dimension of the rectangular ground point net
work. 

For the sample network. the numbering will be fron I through 
6 across the first photos of the strips. 2 through 12 across the 
next set. etc .• as shown In figure la. The resulting banded 
normal equation structure. figure Ib, should be faftillar to 
nearly everyone familiar with photogrammetrlc bundle adjustment 
methods. The bandwidth of B c 2N + 3 = 15. where N Is the number 
of strips. and additional fill of F' = 156 are near optiMum. 

CUTHILL-MCKEE ALGORITHM 

The first step In any bandwidth reduction algorithm Is the 
selection of a starting node. The choice that will lead to the 
minimum bandwidth Is a node of low degree. but not necessarily 
one of the nodes of mlnlmun degree. In choosing a starting node 
for the Cuthill-McKee algorithm. two possible upper bounds for 
the degrees of favorable candidates are suggested: the Median 
degree of all nodes and the Mean of the minimum and maximum 
degrees encountered In the total set. Once chosen, the starting 
node Is assigned number I. and all nodes adjacent to it are 
numbered In sequence In order of Increasing degree. Ties are 
broken arbitrarily. Next. all unnumbered nodes adjacent to node 
2 are nUMbered sequentially In order of Increasing degree. The 
first such node Is assigned the number following the highest 
number assl9ned to the nodes adjacent to node I. This procedure 
is then repeated for node 3, node 4. and so forth, until all 
nodes are numbered. 

The nuftb"rlng of our sample network that results from this 
scheMe Is sh~wn In figure la. This numbering Is not unique, 
because any of the four corner photographs used as starting node 
would have produced a equivalent norMal equations data structure 
to that shown In part b of the figure. Furthermore, a number of 
ties were broken arbitrarily. as specified by the algorithm, and 
these choices have Influenced the structure. In fact, the band
width and fill would have Increased If certain of these ties had 
been resolved differently. It Is evident that the bandwidth, 
already greater than that of CSN, will continue to grow as more 
strips are added, but not If the length of the strips are In
creased. The bandwidth will be given by B = 4N - 3. 

REVERSE CUTHILL-MCKEE ALGORITHM (RCM) 

George (1971) discovered that reversing the nUMbering that 
results from the Cuthill-McKee algorithm will always reduce the 
profile of the normal equation matrix. Since reversing the 
order will not change the bandwidth. this Reverse Cuthill-McKee 
algorithm will nearly always reduce the fill. 
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Figure 2a shows the reverse of the photo nUMbering sche~e of 
figure la, and the associated data structure (fig. 2b) shows the 
expected reduction In F' to be IMpresslve--184 as opposed to 254 
for conventional Cuthill-McKee. This procedure should certainly 
be considered to be the More advantageous, but does not co~pare 
very favorably to CSN In the sample case. 

ALGORITHM OF GIBBS, POOLE, AND STOCKMEYER 

Gibbs et al (1974) suggest an algorithm which they clal~ 
typically produces bandwidth and profile which are comparable to 
those of RCM, but aCCOMplishes the reordering In significantly 
less co~putatlon tiMe. A COMplete description of this algorlth~ 
Is beyond the scope of this paper. Briefly, the method consists 
of: 1) finding a pair of nodes that are nearly Maximal distance 
apart by generating level structures; 2) combining the level 
structures rooted In these two nodes Into a new level structure 
whose width Is usually less than either of the original ones; and 
3) numbering the nodes within each level of the new structure 
using a procedure similar to the Cuthill-Mckee algorithm. 

When applied to Simpler networks In which each point Is 
connected to just the eight neighbors surrounding It, this algor
Ithm provides the Ideal cross-strip o~derlng and gives rise to 
the hope that this will be an efficient automated procedure for 
CSN, but for photogrammetrlc networks the results are disappoint
ing. When applied to the saMple case, a bandwidth of B = 20 (one 
less than RCM) and F = 185 (the same as RCM) result. As promised 
by Its authors the algorithm is a slight Improvement over RCM and 
Is obtained In a fraction of the computing tiMe; however, It does 
not compare favorably with CSN. 

BANKER'S ALGORITHM 

The banker's algorithm, proposed by Snay (1976), was devised 
as a Means of obtaining near MiniMal column profile. Once a 
starting node has been selected, all nodes adjacent to It (Its 
neighbors) are added to a list of hopefuls. All nodes adjacent 
to either the starting node or hopeful nodes are then added to a 
list of candidates, unless they are already selected or are 
already candidates. The next node to be selected from the list 
of candidates Is the one with the minimum number of neighbors 
that have neither been selected nor added to the hopeful list. 
In case of ties, nodes on the hopeful list are chosen. Other
wise, ties are broken arbitrarily. When a new node Is nu~bered, 
all of Its neighbors are added to the hopeful list and any of 
their neighbors not already Included are added to the candidate 
list. This procedure Is repeated until all nodes are nu~bered. 

The ordering shown in figure 4a Is not 
arbitrary tie breaking procedure employed. 
(fig. 4b) obtains F' = 138, a significant 
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156 of CSN. but at the expense of a bandwidth of 27. Both 
bandwidth and fill would Increase If additional strips were 
added. here B = 4N + 3. but Increasing the lenghth of the strips 
would not affect bandwidth and the Increase In F' would be COMP
arable to that with CSN. This appears to be the best algorlth~. 
of those tested. for reducing the profile of a photograMMetrlc 
network. but Is a poor choice for bandwidth reduction. 

A HEURISTIC APPROACH 

The author. having searched In vain for an algorlth~ that 
would iMprove upon CSN. or even duplicate Its results in the 
Ideal case. did not want to leave the reader with only negative 
results. If we aSSUMe that .ost networks will by design approxi
Mate the Ideal case. then any algorithM that will reproduce CSN 
under ideal cirCUMstances should be worth pursuing. The follow
Ing algorlth~. which has proved to be quite satisfactory In 
dealing with real networks. was developed In an atte~pt to con
struct a set of rules that will cause the computer to produce the 
CSN ordering: 

1) Choose a starting node and label It number 1. 
Any of the four nodes of MiniMUM degree Is obviously a 
valid choice for the theoretical network under consider
ation. 

2) For~ a list of candidates that consists of all 
neighbors (adjacent nodes) of the starting node. 

3) Choose 
with the fewest 
candidates. 

from the the candidate list the node 
neighbors that have not yet beCOMe 

a. Ties are broken by choosing the candidate 
with the MaxiMum nu~ber of neighbors that are already on 
the candidate list. 

b. If a tie still exists. choose the candidate 
whose sponsor (see step 4) has the lowest number. 

c. Ties that still exist are to be broken 
arbitrarily or by a rule. or set of rules. specified by 
the user <see discussion following step 8). 

4) ASSign to this node the next nUMber In sequence 
and add to the candidate list all of Its neighbors that 
are not already candidates. Tag each of these new 
candidates with the number aSSigned to the node that 
caused theM to beCOMe candidates <their sponsor). 

5) Repeat steps 3 and 4 until all neighbors of 
the starting node have been nUMbered. 
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6) Choose froM the candidate list the node whose 
sponsor has the lowe st nUMber. In the event of a tie, 
select the candidate of MiniMuM degree. 

7) Follow the procedure given In step 4. 

8) Repeat steps 6 and 7 until all nodes are 
nUMbe red. 

For this algorithM to Meet Its stated objective, to teach 
the cOMputer to duplicate the Manual sorting process, the four 
equally valid choices for a starting node are known In advance. 
Having Made this choice, however, there does not seem to be a 
siMple Means of choosing node nUMber 2 without searching down two 
paths to find which Is longer. There are two candidates for the 
number 2 position that are Indistinguishable through all the tie 
breaking procedures in step 3. One leads to CSN while the other 
will produce along-strip numbering. 

There 
that could 
choice will 
are: 

are a nUMber of additional tie-breaking procedures 
be applied and the MOst advantageous and/or efficient 
depend on the set of circuMstances. SOMe suggestions 

1) Choose one of the candidates and proceed through step 5. 
At this point the highest nUMber assigned Is the local bandwidth 
of node 1. Record this nUMber and repeat these steps using the 
alternative candidate. The candidate that gives the sMaller 
local bandwidth for node 1 is the correct choice. 

2) Specify In advance a MaxiMUM acceptable bandwidth for 
the specific network or to apply to all networks, if determined 
by physical liMitation such as storage. Choose one of the candi
dates and proceed. If a nUMber larger than the specified MaxiMum 
is reached before step 5 is cOMplete, stop and choose the alter
nate candidate. If the specified Maxi.uM .ust not be exceeded 
for SOMe reason, the algorithM should be instructed to stop and 
take an alternate route If any local bandwidth becollles too large. 
The growth of the local bandwidth can be Monitored at all ti.es 
by checking the difference between the number assigned to a node 
and the nu.ber of its sponsor. 

3) Let the user choose the first two nodes, because he will 
certainly know which are the along- and across-strip directions, 
If the network length Is Much greater than Its width. 

Without SOMe Means of directing Its choice of node nUMber 2, 
this algorithM 15 equally likely to choose along-strip nu.berlng 
as CSN, when applied to networks of the type described In this 
paper. However, when applied to photo networks In which side 
overlap does not exceed 50 percent, It will always number along 
the strips. 
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CONCLUSION 

Of the algorithms Investigated, the bandwidth reduction 
Methods are the Most convenient to eMploy because Most software 
for block bundle adjustMents has been designed for banded Matri
ces. For networks of Moderate size, any of the bandwidth Methods 
will suffice, If SOMe Inefficiency In computer utilization can be 
tolerated. All of the tested algorlth~s need additional tle
breaking rules, however, to perform as well as the Idealized 
applications given In this paper. 

If storage Is not as Important a consideration as speed, the 
banker's algorithM appears to be a good choice. If ~ost networks 
are expected to be of the denslflcatlon type, having side overlap 
of 60 percent or More, then the heuristic algorlth~ seems to be a 
better all-round choice. 
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FIGURE CAPTIONS 

Figure 1. Cross-Strip NUMbering (CSN). 

Figure 2. Cuthill-McKee Algorithm. 

Figure 3. Reverse Cuthill-McKee Algorlth~ (RCM). 

Figure 4. Banker's Algorithm. 
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1 7 13 19 25 3 1 37 43 
- - - - - - - - - - - - - - - -
2 8 14 20 26 32 38 44 

- - - - - - - - - - - - - - - -
3 9 15 2 1 27 33 39 45 

- - - - - - - - - - - - - - - -

4 10 1 6 22 28 34 40 46 
- - - - - - - - - - - - - - - -
5 1 1 1 7 23 29 35 4 1 47 

- - - - - - - - - - - - - - - -

6 12 1 8 24 30 36 42 48 

Ca) Numbering of Photographs 

E = 15 

F = 540 

F/ = 155 

Cb) Norma 1 Equat i on Structure 



47 143 14 1 135 129 11 7 I 1 2 I 5 I I I I I I I 

4514214013412811611114 
I I I I I I I 

3913813712712511511013 
I I I I I I I 

331321311261241141912 
I I I I I I I 

23122121120119181711 
I I I I I I I 

(a) Numbering of Photographs 

B 21 

F 568 

F / 184 

(b) Normal Equation Structure 



1 7 13 19 25 33 132 131 1 1 
- - - - - - - - - -
2 8 1 4 20 26 36 135 134 1 1 - - - - - - - - - -
3 9 15 2 1 27 39 138 137 1 1 

- - - - - - - - - -

4 10 16 22 28 42 141 140 1 1 
- - - - - - - - - -
5 1 1 1 7 23 29 45 144 143 1 1 

- - - - - - - - - -
6 1 2 18 24 30 48 147 146 1 1 

Ca) Numbering of Photographs 

B - 27 

F - 522 

F' 138 

Cb) Normal Equation Structure 
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